Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
PLoS Biol ; 21(5): e3002118, 2023 05.
Article in English | MEDLINE | ID: covidwho-20235131

ABSTRACT

The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. Reliable estimates of the infection fatality ratio (IFR) and infection hospitalisation ratio (IHR) along with the time-delay between infection and hospitalisation/death can inform forecasts of the numbers/timing of severe outcomes and allow healthcare services to better prepare for periods of increased demand. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in England approximately monthly from May 2020 to March 2022. Here, we analyse the changing relationship between prevalence of swab positivity and the IFR and IHR over this period in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models, and Bayesian P-spline models. We analyse data for all age groups together, as well as in 2 subgroups: those aged 65 and over and those aged 64 and under. Additionally, we analysed the relationship between swab positivity and daily case numbers to estimate the case ascertainment rate of England's mass testing programme. During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late 2021/early 2022, the IFR and IHR had both decreased to 0.097% and 0.76%, respectively. The average case ascertainment rate over the entire duration of the study was estimated to be 36.1%, but there was some significant variation in continuous estimates of the case ascertainment rate. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta's emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late 2021/early 2022, these time-lags had decreased to 7 days for hospitalisations and 18 days for deaths. Even though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on the IHR and IFR. As investments in community surveillance of SARS-CoV-2 infection are scaled back, alternative methods are required to accurately track the ever-changing relationship between infection, hospitalisation, and death and hence provide vital information for healthcare provision and utilisation.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Pandemics , England/epidemiology , Hospitalization
2.
Am J Public Health ; 113(5): 545-554, 2023 05.
Article in English | MEDLINE | ID: covidwho-2258149

ABSTRACT

Data System. The REal-time Assessment of Community Transmission-1 (REACT-1) Study was funded by the Department of Health and Social Care in England to provide reliable and timely estimates of prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection over time, by person and place. Data Collection/Processing. The study team (researchers from Imperial College London and its logistics partner Ipsos) wrote to named individuals aged 5 years and older in random cross-sections of the population of England, using the National Health Service list of patients registered with a general practitioner (near-universal coverage) as a sampling frame. We collected data over 2 to 3 weeks approximately every month across 19 rounds of data collection from May 1, 2020, to March 31, 2022. Data Analysis/Dissemination. We have disseminated the data and study materials widely via the study Web site, preprints, publications in peer-reviewed journals, and the media. We make available data tabulations, suitably anonymized to protect participant confidentiality, on request to the study's data access committee. Public Health Implications. The study provided inter alia real-time data on SARS-CoV-2 prevalence over time, by area, and by sociodemographic variables; estimates of vaccine effectiveness; and symptom profiles, and detected emergence of new variants based on viral genome sequencing. (Am J Public Health. 2023;113(5):545-554. https://doi.org/10.2105/AJPH.2023.307230).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , England/epidemiology , Public Health , State Medicine , Cross-Sectional Studies
3.
Arch Dis Child ; 108(7): e12, 2023 07.
Article in English | MEDLINE | ID: covidwho-2250472

ABSTRACT

OBJECTIVE: To estimate the prevalence of, and associated risk factors for, persistent symptoms post-COVID-19 among children aged 5-17 years in England. DESIGN: Serial cross-sectional study. SETTING: Rounds 10-19 (March 2021 to March 2022) of the REal-time Assessment of Community Transmission-1 study (monthly cross-sectional surveys of random samples of the population in England). STUDY POPULATION: Children aged 5-17 years in the community. PREDICTORS: Age, sex, ethnicity, presence of a pre-existing health condition, index of multiple deprivation, COVID-19 vaccination status and dominant UK circulating SARS-CoV-2 variant at time of symptom onset. MAIN OUTCOME MEASURES: Prevalence of persistent symptoms, reported as those lasting ≥3 months post-COVID-19. RESULTS: Overall, 4.4% (95% CI 3.7 to 5.1) of 3173 5-11 year-olds and 13.3% (95% CI 12.5 to 14.1) of 6886 12-17 year-olds with prior symptomatic infection reported at least one symptom lasting ≥3 months post-COVID-19, of whom 13.5% (95% CI 8.4 to 20.9) and 10.9% (95% CI 9.0 to 13.2), respectively, reported their ability to carry out day-to-day activities was reduced 'a lot' due to their symptoms. The most common symptoms among participants with persistent symptoms were persistent coughing (27.4%) and headaches (25.4%) in children aged 5-11 years and loss or change of sense of smell (52.2%) and taste (40.7%) in participants aged 12-17 years. Higher age and having a pre-existing health condition were associated with higher odds of reporting persistent symptoms. CONCLUSIONS: One in 23 5-11 year-olds and one in eight 12-17 year-olds post-COVID-19 report persistent symptoms lasting ≥3 months, of which one in nine report a large impact on performing day-to-day activities.


Subject(s)
COVID-19 , Humans , Child , Adolescent , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Vaccines , Cross-Sectional Studies , England/epidemiology
4.
Clin Infect Dis ; 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-2250471

ABSTRACT

BACKGROUND: We explore SARS-CoV-2 antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralisation. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of IgG antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U ml-1). Live virus neutralisation was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% CI 71.8, 84.6), 142/155 (91.6%; 86.1, 95.5) with ALFA, and 169 (100%; 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralisation; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI 46.5, 68.9), 34/75 (45.3%; 33.8, 57.3) with ALFA, and 0/81 (0%; 0.0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralisation.

5.
Wellcome Open Res ; 6: 358, 2021.
Article in English | MEDLINE | ID: covidwho-2228543

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

6.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: covidwho-2229659

ABSTRACT

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Young Adult , Adult , Middle Aged , SARS-CoV-2/genetics , Phylogeny , England/epidemiology
7.
PLoS Comput Biol ; 18(11): e1010724, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140359

ABSTRACT

BACKGROUND: Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AIM: We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. METHODS: On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. RESULTS: Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. CONCLUSION: High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.

8.
Nat Commun ; 13(1): 4500, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972602

ABSTRACT

Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n = 102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R = 0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R = 1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/epidemiology , Child , England/epidemiology , Humans , Specimen Handling
9.
Lancet Reg Health Eur ; 21: 100462, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966923

ABSTRACT

Background: The Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage. Methods: In the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022). Findings: We estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76-3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91-0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00-1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0-0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1047, 64.8% (62.4-67.2) were BA.1; N=568, 35.2% (32.8-37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34-0.41). The highest proportion of BA.2 among positives was found in London. Interpretation: In February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required. Funding: Department of Health and Social Care, England.

10.
BMC Infect Dis ; 22(1): 647, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1962762

ABSTRACT

BACKGROUND: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. METHODS: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September-27 September 2021) and 15 (19 October-5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. RESULTS: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8-23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. CONCLUSIONS: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , England/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
11.
Nat Commun ; 13(1): 4375, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960372

ABSTRACT

The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant (first detected in November 2021) exhibited a high degree of immune evasion, leading to increased infection rates worldwide. However, estimates of the magnitude of this Omicron wave have often relied on routine testing data, which are prone to several biases. Using data from the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys assessing prevalence of SARS-CoV-2 infection in England, we estimated the dynamics of England's Omicron wave (from 9 September 2021 to 1 March 2022). We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct variants, intermittent epidemics of similar magnitudes may become the 'new normal'.


Subject(s)
COVID-19 , Epidemics , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Humans , SARS-CoV-2/genetics
12.
Epidemics ; 40: 100604, 2022 09.
Article in English | MEDLINE | ID: covidwho-1905565

ABSTRACT

The time-varying reproduction number (Rt) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of Rt from case data. However, these are not easily adapted to point prevalence data nor can they infer Rt across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020-December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of Rt over the period of two subsequent rounds (6-8 weeks) and single rounds (2-3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in Rt over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in Rt over the summer of 2020 as restrictions were eased, and a reduction in Rt during England's second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , COVID-19/epidemiology , Communicable Disease Control , Humans , Prevalence , Reproduction
13.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-1876835

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited;the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124;95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62;95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

14.
Science ; 376(6600): eabq4411, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1861571

ABSTRACT

Rapid transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to record-breaking incidence rates around the world. The Real-time Assessment of Community Transmission-1 (REACT-1) study has tracked SARS-CoV-2 infection in England using reverse transcription polymerase chain reaction (RT-PCR) results from self-administered throat and nose swabs from randomly selected participants aged 5 years and older approximately monthly from May 2020 to March 2022. Weighted prevalence in March 2022 was the highest recorded in REACT-1 at 6.37% (N = 109,181), with the Omicron BA.2 variant largely replacing the BA.1 variant. Prevalence was increasing overall, with the greatest increase in those aged 65 to 74 years and 75 years and older. This was associated with increased hospitalizations and deaths, but at much lower levels than in previous waves against a backdrop of high levels of vaccination.


Subject(s)
COVID-19 , Epidemics , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , England/epidemiology , Humans , Incidence , Prevalence , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
15.
EClinicalMedicine ; 48: 101419, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821213

ABSTRACT

Background: Prevalence of SARS-CoV-2 infection with Delta variant was increasing in England in late summer 2021 among children aged 5 to 17 years, and adults who had received two vaccine doses. In September 2021, a third (booster) dose was offered to vaccinated adults aged 50 years and over, vulnerable adults and healthcare/care-home workers, and a single vaccine dose already offered to 16 and 17 year-olds was extended to children aged 12 to 15 years. Methods: SARS-CoV-2 community prevalence in England was available from self-administered throat and nose swabs using reverse transcriptase polymerase chain reaction (RT-PCR) in round 13 (24 June to 12 July 2021, N = 98,233), round 14 (9 to 27 September 2021, N = 100,527) and round 15 (19 October to 5 November 2021, N = 100,112) from the REACT-1 study randomised community surveys. Linking to National Health Service (NHS) vaccination data for consenting participants, we estimated vaccine effectiveness in children aged 12 to 17 years and compared swab-positivity rates in adults who received a third dose with those who received two doses. Findings: Weighted SARS-CoV-2 prevalence was 1.57% (1.48%, 1.66%) in round 15 compared with 0.83% (0.76%, 0.89%) in round 14, and the previously observed link between infections and hospitalisations and deaths had weakened. Vaccine effectiveness against infection in children aged 12 to 17 years was estimated (round 15) at 64.0% (50.9%, 70.6%) and 67.7% (53.8%, 77.5%) for symptomatic infections. Adults who received a third vaccine dose were less likely to test positive compared to those who received two doses, with adjusted OR of 0.36 (0.25, 0.53). Interpretation: Vaccination of children aged 12 to 17 years and third (booster) doses in adults were effective at reducing infection risk. High rates of vaccination, including booster doses, are a key part of the strategy to reduce infection rates in the community. Funding: Department of Health and Social Care, England.

17.
Nat Commun ; 13(1): 907, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692613

ABSTRACT

Population antibody surveillance helps track immune responses to COVID-19 vaccinations at scale, and identify host factors that may affect antibody production. We analyse data from 212,102 vaccinated individuals within the REACT-2 programme in England, which uses self-administered lateral flow antibody tests in sequential cross-sectional community samples; 71,923 (33.9%) received at least one dose of BNT162b2 vaccine and 139,067 (65.6%) received ChAdOx1. For both vaccines, antibody positivity peaks 4-5 weeks after first dose and then declines. At least 21 days after second dose of BNT162b2, close to 100% of respondents test positive, while for ChAdOx1, this is significantly reduced, particularly in the oldest age groups (72.7% [70.9-74.4] at ages 75 years and above). For both vaccines, antibody positivity decreases with age, and is higher in females and those with previous infection. Antibody positivity is lower in transplant recipients, obese individuals, smokers and those with specific comorbidities. These groups will benefit from additional vaccine doses.


Subject(s)
Aging/immunology , Antibodies, Viral/blood , BNT162 Vaccine/immunology , ChAdOx1 nCoV-19/immunology , SARS-CoV-2/immunology , Age Factors , Aged , Antibody Formation/immunology , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , England/epidemiology , Female , Humans , Immunization Programs , Immunoglobulin G/blood , Male , Middle Aged , Prospective Studies , Sex Factors , Vaccination
18.
Science ; 375(6587): 1406-1411, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1673338

ABSTRACT

The unprecedented rise in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections during December 2021 was concurrent with rapid spread of the Omicron variant in England and globally. We analyzed the prevalence of SARS-CoV-2 and its dynamics in England from the end of November to mid-December 2021 among almost 100,000 participants in the REACT-1 study. Prevalence was high with rapid growth nationally and particularly in London during December 2021, with an increasing proportion of infections due to Omicron. We observed large decreases in swab positivity among mostly vaccinated older children (12 to 17 years) relative to unvaccinated younger children (5 to 11 years), and in adults who received a third (booster) vaccine dose versus two doses. Our results reinforce the importance of vaccination and booster campaigns, although additional measures have been needed to control the rapid growth of the Omicron variant.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , England/epidemiology , Humans , Immunization, Secondary , Middle Aged , Prevalence
19.
Lancet Respir Med ; 10(4): 355-366, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655306

ABSTRACT

BACKGROUND: England has experienced a third wave of the COVID-19 epidemic since the end of May, 2021, coinciding with the rapid spread of the delta (B.1.617.2) variant, despite high levels of vaccination among adults. Vaccination rates (single dose) in England are lower among children aged 16-17 years and 12-15 years, whose vaccination in England commenced in August and September, 2021, respectively. We aimed to analyse the underlying dynamics driving patterns in SARS-CoV-2 prevalence during September, 2021, in England. METHODS: The REal-time Assessment of Community Transmission-1 (REACT-1) study, which commenced data collection in May, 2020, involves a series of random cross-sectional surveys in the general population of England aged 5 years and older. Using RT-PCR swab positivity data from 100 527 participants with valid throat and nose swabs in round 14 of REACT-1 (Sept 9-27, 2021), we estimated community-based prevalence of SARS-CoV-2 and vaccine effectiveness against infection by combining round 14 data with data from round 13 (June 24 to July 12, 2021; n=172 862). FINDINGS: During September, 2021, we estimated a mean RT-PCR positivity rate of 0·83% (95% CrI 0·76-0·89), with a reproduction number (R) overall of 1·03 (95% CrI 0·94-1·14). Among the 475 (62·2%) of 764 sequenced positive swabs, all were of the delta variant; 22 (4·63%; 95% CI 3·07-6·91) included the Tyr145His mutation in the spike protein associated with the AY.4 sublineage, and there was one Glu484Lys mutation. Age, region, key worker status, and household size jointly contributed to the risk of swab positivity. The highest weighted prevalence was observed among children aged 5-12 years, at 2·32% (95% CrI 1·96-2·73) and those aged 13-17 years, at 2·55% (2·11-3·08). The SARS-CoV-2 epidemic grew in those aged 5-11 years, with an R of 1·42 (95% CrI 1·18-1·68), but declined in those aged 18-54 years, with an R of 0·81 (0·68-0·97). At ages 18-64 years, the adjusted vaccine effectiveness against infection was 62·8% (95% CI 49·3-72·7) after two doses compared to unvaccinated people, for all vaccines combined, 44·8% (22·5-60·7) for the ChAdOx1 nCov-19 (Oxford-AstraZeneca) vaccine, and 71·3% (56·6-81·0) for the BNT162b2 (Pfizer-BioNTech) vaccine. In individuals aged 18 years and older, the weighted prevalence of swab positivity was 0·35% (95% CrI 0·31-0·40) if the second dose was administered up to 3 months before their swab but 0·55% (0·50-0·61) for those who received their second dose 3-6 months before their swab, compared to 1·76% (1·60-1·95) among unvaccinated individuals. INTERPRETATION: In September, 2021, at the start of the autumn school term in England, infections were increasing exponentially in children aged 5-17 years, at a time when vaccination rates were low in this age group. In adults, compared to those who received their second dose less than 3 months ago, the higher prevalence of swab positivity at 3-6 months following two doses of the COVID-19 vaccine suggests an increased risk of breakthrough infections during this period. The vaccination programme needs to reach children as well as unvaccinated and partially vaccinated adults to reduce SARS-CoV-2 transmission and associated disruptions to work and education. FUNDING: Department of Health and Social Care, England.


Subject(s)
COVID-19 , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Child, Preschool , Cross-Sectional Studies , England/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , Surveys and Questionnaires , Vaccine Efficacy , Young Adult
20.
Open Forum Infect Dis ; 8(11): ofab496, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526185

ABSTRACT

BACKGROUND: Seroprevalence studies are essential to understand the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Various technologies, including laboratory assays and point-of-care self-tests, are available for antibody testing. The interpretation of seroprevalence studies requires comparative data on the performance of antibody tests. METHODS: In June 2020, current and former members of the United Kingdom police forces and fire service performed a self-test lateral flow immunoassay (LFIA), had a nurse-performed LFIA, and provided a venous blood sample for enzyme-linked immunosorbent assay (ELISA). We present the prevalence of antibodies to SARS-CoV-2 and the acceptability and usability of self-test LFIAs, and we determine the sensitivity and specificity of LFIAs compared with laboratory ELISA. RESULTS: In this cohort of 5189 current and former members of the police service and 263 members of the fire service, 7.4% (396 of 5348; 95% confidence interval [CI], 6.7-8.1) were antibody positive. Seroprevalence was 8.9% (95% CI, 6.9-11.4) in those under 40 years, 11.5% (95% CI, 8.8-15.0) in those of nonwhite ethnicity, and 7.8% (95% CI, 7.1-8.7) in those currently working. Self-test LFIA had an acceptability of 97.7% and a usability of 90.0%. There was substantial agreement between within-participant LFIA results (kappa 0.80; 95% CI, 0.77-0.83). The LFIAs had a similar performance: compared with ELISA, sensitivity was 82.1% (95% CI, 77.7-86.0) self-test and 76.4% (95% CI, 71.9-80.5) nurse-performed with specificity of 97.8% (95% CI, 97.3-98.2) and 98.5% (95% CI, 98.1-98.8), respectively. CONCLUSIONS: A greater proportion of this nonhealthcare key worker cohort showed evidence of previous infection with SARS-CoV-2 than the general population at 6.0% (95% CI, 5.8-6.1) after the first wave in England. The high acceptability and usability reported by participants and similar performance of self-test and nurse-performed LFIAs indicate that the self-test LFIA is fit for purpose for home testing in occupational and community prevalence studies.

SELECTION OF CITATIONS
SEARCH DETAIL